Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Yan-Chao Wu, ${ }^{\mathbf{a}} \ddagger$ Hai-Bin Song, ${ }^{\text {b }}$ Li Liu, ${ }^{\text {a }}$ Dong Wang ${ }^{\text {a }}$ and Yong-Jun Chen ${ }^{\text {a }}$

${ }^{\text {a }}$ Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
\# Present address: Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100080, People's Republic of China.

Correspondence e-mail: yjchen@iccas.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.048$
$w R$ factor $=0.140$
Data-to-parameter ratio $=16.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(4-Methoxystyryl)-2H-1,4-benzoxazin-2-one

The title compound, $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}$, a coumarin analog prepared from (E)-methyl 4-(4-methoxyphenyl)-2-oxobut-3-enoate and 2 -aminophenol, has a planar conformation. Aromatic π stacking interactions and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds stabilize the crystal structure.

Comment

Coumarins and their derivatives are widely distributed in the plant kingdom and have attracted considerable attention because of their varied pharmaceutical activities; these include inhibition of platelet aggregation (Cravotto et al., 2001), antibacterial activity (Kayser \& Kolodziej, 1997), anticancer activity (Wang et al., 2002), inhibition of steroid 5-reductase (Fan et al., 2001) and inhibition of HIV-1 protease (Kirkiacharian et al., 2002). It is interesting to synthesize coumarin analogs since they may yield a new chemical class of pharmaceutical agents, with new modes of action and lacking resistance to currently used chemicals. Against this background, the title compound, (I), has been synthesized and its crystal structure determined.

(I)

The structure of (I) is shown in Fig. 1, with the atomic numbering scheme. All atoms, with the exception of methyl H atoms, are essentially coplanar, with an r.m.s. deviation of $0.060 \AA$. A packing diagram of the crystal structure of (I) (Fig. 2) shows that aromatic π-stacking interactions and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) stabilize the crystal structure. The

Figure 1
View of the molecule, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary size.

Received 20 April 2005 Accepted 29 April 2005 Online 7 May 2005
\qquad
distance between the planes of the heterocyclic ring and ring C1-C6 at $(1-x, 1-y, 1-z)$ is 3.523 (1) \AA.

Experimental

A mixture of (E)-methyl 4-(4-methoxyphenyl)-2-oxobut-3-enoate (0.2 mmol) and 2-aminophenol (0.2 mmol) in boiling trifluoroacetic acid (2 ml) under atmospheric nitrogen was stirred for 1 d ; the trifluoroacetic acid was then distilled out for future use. The residue was diluted with dichloromethane (30 ml), washed with saturated aqueous sodium bicarbonate $(5 \mathrm{ml})$ and then water $(5 \mathrm{ml})$. It was then dried over anhydrous sodium sulfate, filtered, evaporated under reduced pressure, and isolated by flash chromatography on silica gel (200-300 mesh) in 91% yield. Yellow single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (m.p. 431-433 K). FT-IR ($\mathrm{KBr}, v \mathrm{~cm}^{-1}$): $1735,1600,1511$, $1260,1169,1079,754 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05(d, J=$ $16.11 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(d d, J=9.33,1.59 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(d, J=8.72 \mathrm{~Hz}$, 2H), 7.41-7.31 ($m, 3 \mathrm{H}$), $7.24(d d, J=8.04,1.35 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(d, J=$ $8.72 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(s, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.18$, $149.69,145.89,140.04,132.05,130.09,129.80,128.70,128.61,125.59$, 118.76, 116.23, 114.38, 55.39; analysis calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}$: C 73.11, H 4.69, N 5.02\%; found: C 73.19, H 4.63, N 5.00\%.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}$
$M_{r}=279.28$
Orthorhombic, Pbca
$a=11.857(2) \AA$
$b=7.1867(14) \AA$
$c=32.253(7) \AA$
$V=2748.5(10) \AA^{3}$
$Z=8$
$D_{x}=1.350 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku R-AXIS RAPID IP diffractometer ω scans

Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.955, T_{\text {max }}=0.997$
19445 measured reflections

Mo $K \alpha$ radiation

Cell parameters from 19445 reflections
$\theta=1.3-27.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Platelet, yellow
$0.49 \times 0.45 \times 0.04 \mathrm{~mm}$

3131 independent reflections
1471 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.054$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-14 \rightarrow 15$
$k=-8 \rightarrow 9$
$l=-41 \rightarrow 40$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0395 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.17 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.32$ e \AA^{-3}

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

O1-C7	$1.368(2)$	N1-C8	$1.291(3)$
O1-C6	$1.378(2)$	N1-C1	$1.395(3)$
O2-C7	$1.194(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.325(3)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$123.7(2)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$127.2(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-179.2(2)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$179.8(2)$

Figure 2
The molecular packing, viewed down the b axis. Dashed lines indicate hydrogen bonds.

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.50	$3.397(3)$	163

Symmetry code: (i) $\frac{1}{2}+x, \frac{3}{2}-y, 1-z$.

The methyl H atoms were constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

The authors are grateful to the National Natural Science Foundation of China (Nos. 20232010 and 20332030), the Ministry of Science and Technology of China (No. 2002CCA03100) and the Chinese Academy of Sciences for financial support.

References

Bruker (1999). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA
Cravotto, G., Nano, G. M., Palmisano, G. \& Tagliapietra, S. (2001). Tetrahedron: Asymmetry, 12, 707-709
Fan, G.-J., Mar, W., Park, M. K., Wook Choi, E., Kim, K. \& Kim, S. (2001). Bioorg. Med. Chem. Lett. 11, 2361-2363
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Kayser, O \& Kolodziej, H. (1997). Planta Med. 63, 508-510.
Kirkiacharian, S., Thuy, D. T., Sicsic, S., Bakhchinian, R., Kurkjian, R. \& Tonnaire, T. (2002). Il Farmaco, 57, 703-708
Rigaku (2000). RAPID-AUTO. Version 1.2.1. Rigaku International Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Wang, C. J., Hsieh, Y. J., Chu, C. Y., Lin, Y. L. \& Tseng, T. H. (2002). Cancer Lett. 183, 163-168.

